

Figure 2. Experimental and simulated ESR spectra of copolymerattached Cp₂NbCl₂.

	copolyme		
	CpNbCl ₃ ^a	Cp ₂ NbCl ₂ ^a	Cp ₂ NbCl ₂ ^b
g _{xx}	1.981 ± 0.002	1.976 ± 0.002	1.980 ± 0.0005
8 _{yy}	1.990 ± 0.002	1.952 ± 0.002	1.940 ± 0.0005
Szz .	1.908 ± 0.002	2.017	2.000 ± 0.001
T_{xx}^{c}	-0.0105 ± 0.0001	-0.0106 ± 0.0001	$-0.010\ 66\ \pm\ 0.000\ 02$
T_{yy}^{c}	-0.0093 ± 0.0001	-0.0159 ± 0.0001	$-0.015\ 98\pm0.000\ 02$
T_{zz}^{c}	-0.0214 ± 0.0001	(-0.005 28)	$-0.005\ 28\pm0.000\ 02$
ref	this work	this work	3

^a At -126 °C. ^b In chloroform-ethanol (9:1) glass at -196 °C. ^c In cm⁻¹.

action that is not included in eq 1. If an uncalculated quadrupole interaction is indeed present, then failure to include it in determining spin-Hamiltonian parameters could lead to errors of approximately 0.00005 cm⁻¹ in principal values of the hyperfine tensor but to no significant errors in the principal values of the **g** tensor.

Principal values of the **g** and hyperfine (T) tensors for copolymer-attached CpNbCl₃ and copolymer-attached Cp₂NbCl₂ are listed in Table I. Overall estimated uncertainties also are given. For copolymer-attached CpNbCl₃, the x and y patterns might be interchanged. There do not seem to be enough resolved features of the z pattern of copolymer-attached Cp₂NbCl₂ to permit a confident and precise determination of g_{zz} and T_{zz} . The values of g_{zz} and T_{zz} still are regarded as unknown; however, their input values used in obtaining the calculated copolymer-attached Cp₂NbCl₂ spectrum are given in parentheses. For comparison, spin-Hamiltonian parameters reported by Stewart and Porte¹ for dichlorobis(η^5 -cyclopentadienyl)niobium (Cp₂NbCl₂, not attached to any polymer) in chloroform-ethanol (9:1) glass at -196 °C are also given in Table I.

The analyses of the spectra strongly support the identities and assumed structures of the two copolymer-supported Nb(IV) species. The supported Cp_2NbCl_2 must have the same structure as the unsupported compound and the $CpNbCl_3$ a "piano stool" structure with a "local" C_{3v} axis through the three chlorine atoms. The unsupported $CpNbCl_3$ is unknown.

Registry No. CpNbCl₃, 71463-31-5; Cp₂NbCl₂, 12793-14-5; styrene-divinylbenzene copolymer, 9003-70-7.

References and Notes

- (1) C. P. Stewart and A. L. Porte, J. Chem. Soc. Dalton Trans., 722-9 (1973).
- (2) C. P. Lau, Ph.D. Dissertation, Michigan State University, East Lansing, MI, 1977; J. G.-S. Lee and C. H. Brubaker, Jr., J. Organomet. Chem., 135, 333 (1977).
- (3) R. H. Sands, Phys. Rev., 99, 1222-6 (1955).
- (4) C. P. Stewart and A. L. Porte, J. Chem. Soc., Dalton Trans., 1661-6
- (1972).
 (5) P. C. Taylor, J. F. Baugher, and H. M. Kriz, *Chem. Rev.*, 75, 203-40 (1975).

Contribution from the Laboratoire de Chimie des Organométalliques, ERA CNRS No. 477, Université de Rennes, 35042 Rennes Cedex, France

Ligand Exchange in Ferrocene with a η^1 Ligand: CO. A Bridge between Ferrocene and Cyclopentadienyl–Iron–Dicarbonyl Chemistry

Enrique Roman and Didier Astruc*

Received February 15, 1978

The plethora of ferrocene chemistry can be categorized into (i) reactions retaining the sandwich structure and (ii) complete decomplexation with use of drastic conditions.¹ The only ligand-exchange reactions known involve replacement of one² or both³ cyclopentadienyl rings with arenes, a promising field with respect to activation and arene synthesis.⁴ Yet this latter chemistry falls into the first of these two categories. We report here the first transformation of ferrocene to a nonsandwich organometallic compound, namely, its reaction with CO using AlCl₃/H₂O to give CpFe(CO)₃⁺⁵ (eq 1). Since this reaction proceeds cleanly in good yield, it opens a useful bridge between rich chemistries of both ferrocene¹ and "Fp".⁶

Experimental Section

Into a 500-mL steel autoclave were successively introduced 2.79 g of ferrocene (15 mmol), 0.81 g of aluminum powder (15 mmol), 0.27 g of water (15 mmol), and 40 mL of heptane. The mixture was flushed with N_2 and 6 g of AlCl₃ (45 mmol) was added under N_2 . The autoclave was pressurized with 100 atm of CO, mechanically shaken, and heated to 120 °C for 12 h (CO pressure by now was 120 atm). The reaction mixture was then hydrolyzed at 0 °C with 100 mL of ice water and filtered, and the two phases were separated. The aqueous phase was washed twice with 100 mL of ether and then added to a filtered solution of NaPF₆ (20 mmol). The pale yellow precipitate was filtered, dried, and recrystallized from acetone. A 3.7-g yield of PF₆⁻ salt (70%) was isolated. η^5 -C₃H₃Fe(CO)₃+PF₆⁻⁵ exhibited a single peak at $\delta = 6.18$ in the ¹H NMR spectrum (CD₃COCD₃) and peaks at ν_{CO} 2135 and 2072 cm⁻¹ in the IR spectrum.⁵ The organic layer was washed with NaHCO₃ and water and dried over MgSO₄. After removal of the solvent, the residue was chromatographed on thick layer plates of silica with hexane as eluant. A 0.3-g yield of ferrocene, 0.05 g of 4,⁷ and 0.01 g of the mixture of 5^7 and 6^7 were isolated and identified by TLC, melting point, and ¹H NMR. See Table I for various experimental conditions. At 80 °C and 5 atm (no H_2O), 5% of 4, 0.5% of 5 + 6, 20% of 3, and traces of 2 were formed (5% ferrocene was recovered).

Table I. Yields in Ligand Exchange between Ferrocene and CO with Different Reaction Conditions (12 h)

temp, °C	P(CO), atm	presence of H ₂ O	yield, %
80	5	no	10
80	100	no	20
80	100	yes	47
110	120	no	30
110	120	yes	70

Discussion

The lack of report of ligand exchange of a ferrocene ring with 2-electron ligands is related to the use of a Lewis acid necessary for the Cp cleavage. Therefore, only those 2-electron ligands which do not interact too strongly with $AlCl_3$ (e.g., CO) are valid candidates. From our mechanistic studies^{2c} (aluminum chloride complexes either to the ring providing its cleavage or to the metal thus inhibiting the cleavage) it follows that water hydrolyzes the Fe-Lewis acid bond formed,⁸ thus considerably assisting the ring cleavage. Therefore the best stoichiometry is ferrocene/AlCl₃/Al/H₂O = 1/3/1/1 (instead of anhydrous conditions: ferrocene/AlCl₃/Al = 1/2/1). After hydrolysis of the reaction mixture, η^5 -C₅H₅Fe(CO)₃+Cl⁻ was the only organometallic product found in the aqueous phase; minor amounts of known⁷ d⁶ iron neutral complexes are isolated from the organic phase (see Experimental Section). Thus the simplicity of the reaction and the low cost of the reactants make eq 1 a very convenient route to 1 in comparison to the other known procedures⁵—a finding of interest because of the great number of Fp complexes accessible by nucleophilic attack of 1.9

Acknowledgment. We thank Dr. Raphalen (ENSCR, Ren-

nes) for useful experimental assistance and the CNRS for financial support.

Registry No. 2, 12107-04-9; 3, 32757-46-3; 4, 12088-07-2; 5, 59246-01-4; 6, 60133-99-5; η^{5} -C₅H₅Fe(CO)₃+PF₆⁻, 38834-26-3; ferrocene, 102-54-5.

References and Notes

- (1) M. Rosenblum, "Chemistry of the Iron Group Metallocenes", Part I. (a) A. N. Nesmeyanov, "Abstracts of the 3rd International Conference
- on Organometalic Chemistry", Butterworths, London, 1967; (b) A. N. Nesmeyanov, Adv. Organomet. Chem., 10, 1 (1972); (c) D. Astruc and R. Dabard, J. Organomet. Chem., 96, 283 (1975); 111, 339 (1976); (d)
 E. Roman and D. Astruc, Nouv. J. Chim., 1, 183 (1976); (e) D. Astruc and R. Dabard, Bull. Soc. Chim. Fr., 2571 (1975); (f) R. G. Sutherland, Organomet. Chem. Libr., 3, 311 (1977); (g) W. H. Morrison, E. Y. Ho, and D. N. Hendrickson, J. Am. Chem. Soc., 96, 3603 (1974); Inorg. Chem., 14, 500 (1975); (h) P. Bachman and H. Singer, Z. Naturforsch., B, 31, 525 (1976).
- (3) (a) D. Astruc, Tetrahedron Lett., 3437 (1973); (b) D. Astruc and R.
- (a) D. Astruc, *Tetranearon Lett.*, 3457 (1975); (b) D. Astruc and R. Dabard, *Tetrahedron*, 32, 245 (1976).
 (a) D. Astruc, E. Roman, J.-R. Hamon, and P. Batail, J. Am. Chem. Soc., 101, 2240 (1979); (b) M. F. Semmelhack, Ann. N.Y. Acad. Sci., 295, 36 (1977); (c) R. G. Sutherland, W. J. Pannekoek, and C. C. Lee, *ibid.*, 295, 192 (1977).
 (a) A. Davison, M. L. H. Green, and G. Wilkinson, J. Chem. Soc., 3172 (1977). (4)
- (1971); (b) E. O. Fischer and K. Fichtel, *Chem. Ber.*, 1200 (1961); (c) R. K. Kochbar and R. Pettit, *J. Organomet. Chem.*, 6, 272 (1966); (d) L. Busetto and R. Angelici, *Inorg. Chim. Acta*, **2**, 3 (1968); (e) W. F. Williams and F. J. Lawlor, *J. Chem. Soc.*, *Chem. Commun.*, 1329 (1973); (f) E. C. Johnson, T. J. Meyer, and N. Winterton, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek and R. J. Angelici, *Inorg. Chem. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek angelici, *Inorg. Chem. Chem. Chem.*, **10**, 1673 (1971); (g) B. D. Dombek angelici, *Inorg. Chem. Chem.* Chim. Acta, 7, 345 (1973); (h) J. A. Ferguson and T. J. Meyer, Inorg. Chem., 10, 1025 (1971).
- M. Rosenblum, Acc. Chem. Res., 7, 2087 (1975).
- (a) D. Astruc, R. Dabard, P. Batail, D. Grandjean, and M. L. Martin, *Tetrahedron Lett.*, 11, 829 (1976); (b) D. Astruc, P. Batail, and M. L. Martin, J. Organomet. Chem., 113, 77 (1975); (c) P. Batail, D. Grandjean, D. Astruc, and R. Dabard, ibid., 102, 79 (1975); 110, 91 (1976).
- (8) (a) A. N. Nesmeyanov, N. A. Vol'kenau, I. N. Bolesova, and L. S. Polovnikova, Koord. Khim., 1, 1252 (1975); (b) E. Roman and D. Astruc, Inorg. Chim. Acta Lett., in press.
- (9) L. Busetto and R. J. Angelici, J. Am. Chem. Soc., 91, 3197 (1969).